Topology optimization with manufacturing constraints: A unified projection-based approach
نویسندگان
چکیده
Despite being an effective and a general method to obtain optimal solutions, topology optimization generates solutions with complex geometries, which are neither cost-effective nor practical from a manufacturing (industrial) perspective. Manufacturing constraint techniques based on a unified projection-based approach are presented herein to properly restrict the range of solutions to the optimization problem. The traditional stiffness maximization problem is considered in conjunction with a novel projection scheme for implementing constraints. Essentially, the present technique considers a domain of design variables projected in a pseudo-density domain to find the solution. The relation between both domains is defined by the projection function and variable mappings according to each constraint of interest. The following constraints have been implemented: minimum member size, minimum hole size, symmetry, pattern repetition, extrusion, turning, casting, forging and rolling. These constraints illustrate the ability of the projection scheme to efficiently control the optimization solution (i.e. without adding a large computational cost). Illustrative examples are provided in order to explore the manufacturing constraints in conjunction with the unified projection-based approach. © 2016 Elsevier Ltd. All rights reserved.
منابع مشابه
SOLVING MULTI CONSTRAINTS STRUCTURAL TOPOLOGY OPTIMIZATION PROBLEM WITH REFORMULATION OF LEVEL SET METHOD
Due to the favorable performance of structural topology optimization to create a proper understanding in the early stages of design, this issue is taken into consideration from the standpoint of research or industrial application in recent decades. Over the last three decades, several methods have been proposed for topology optimization. One of the methods that has been effectively used in stru...
متن کاملISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS
The Isogeometric Analysis (IA) is utilized for structural topology optimization considering minimization of weight and local stress constraints. For this purpose, material density of the structure is assumed as a continuous function throughout the design domain and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...
متن کامل3D BENCHMARK RESULTS FOR ROBUST STRUCTURAL OPTIMIZATION UNDER UNCERTAINTY IN LOADING DIRECTIONS
This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modificati...
متن کاملUndercut and Overhang Angle Control in Topology Optimization: a Density Gradient based Integral Approach
We present an approach for controlling the undercut and the minimal overhang angle in density based topology optimization, which are useful for reducing support structures in additive manufacturing. We cast both the undercut control and the minimal overhang angle control that are inherently constraints on the boundary shape into a domain integral of Heaviside projected density gradient. Such a ...
متن کاملA hybrid algorithm optimization approach for machine loading problem in flexible manufacturing system
The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advances in Engineering Software
دوره 100 شماره
صفحات -
تاریخ انتشار 2016